Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.368
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23693, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622980

RESUMO

IGSF10, a protein that belongs to the immunoglobulin superfamily, is involved in regulating the early migration of neurons that produce gonadotropin-releasing hormone and performs a fundamental function in development. Our previous study confirmed that the mRNA expression level of IGSF10 may be a protective prognosis factor for lung adenocarcinoma (LUAD) patients. However, the specific mechanisms of IGSF10 are still unclear. In this research, it was shown that the protein level of IGSF10 was down-modulated in LUAD tissues and had a link to the clinical and pathological characteristics as well as the patient's prognosis in LUAD. Importantly, IGSF10 regulates the metastatic ability of LUAD cells in vitro and in vivo. It was proven in a mechanistic sense that IGSF10 inhibits the capacity of LUAD cells to metastasize through the Spi-B/Integrin-ß1 signaling pathway. These findings gave credence to the premise that IGSF10 performed a crucial function in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Integrinas/genética , Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , Transdução de Sinais
2.
PLoS One ; 19(2): e0298802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394161

RESUMO

In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions. These transcriptome analyses revealed that 16 genes were statistically upregulated in high outflow regions and 57 genes were statistically downregulated in high outflow regions when compared to low outflow regions. Gene ontology enrichment analysis indicated that the top three biological categories of these differentially expressed genes were ECM/cell adhesion, signal transduction, and transcription. The ECM/cell adhesion genes that showed the largest differential expression (Log2FC ±1.5) were ADAM15, BGN, LDB3, and CRKL. ADAM15, which is a metalloproteinase that can bind integrins, was upregulated in high outflow regions, while the proteoglycan BGN and two genes associated with integrin signaling (LDB3, and CRKL) were downregulated. Immunolabeling studies supported the differential expression of ADAM15 and showed that it was specifically upregulated in high outflow regions along the inner wall of Schlemm's canal and in the juxtacanalicular (JCT) region of the TM. In addition to these genes, the studies showed that genes for decorin, a small leucine-rich proteoglycan, and the α8 integrin subunit were enriched in high outflow regions. These studies identify several novel genes that could be involved in segmental outflow, thus demonstrating that digital spatial profiling could be a useful approach for understanding segmental flow through the TM. Furthermore, this study suggests that changes in the expression of genes involved in regulating the activity and/or organization of the ECM and integrins in the TM are likely to be key players in segmental outflow.


Assuntos
Humor Aquoso , Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Humor Aquoso/metabolismo , Esclera , Proteoglicanas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Pressão Intraocular , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
3.
Nat Commun ; 15(1): 1493, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374043

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we perform single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Integrinas/genética , Multiômica , Proteômica , Fármacos Gastrointestinais/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos
4.
Gut Microbes ; 16(1): 2310894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312103

RESUMO

Gut microbiota and related metabolites are both crucial factors that significantly influence how individuals with Crohn's disease respond to immunotherapy. However, little is known about the interplay among gut microbiota, metabolites, Crohn's disease, and the response to anti-α4ß7-integrin in current studies. Our research utilized 2,4,6-trinitrobenzene sulfonic acid to induce colitis based on the humanized immune system mouse model and employed a combination of whole-genome shotgun metagenomics and non-targeted metabolomics to investigate immunotherapy responses. Additionally, clinical cases with Crohn's disease initiating anti-α4ß7-integrin therapy were evaluated comprehensively. Particularly, 16S-rDNA gene high-throughput sequencing and targeted bile acid metabolomics were conducted at weeks 0, 14, and 54. We found that anti-α4ß7-integrin therapy has shown significant potential for mitigating disease phenotypes in remission-achieving colitis mice. Microbial profiles demonstrated that not only microbial composition but also microbially encoded metabolic pathways could predict immunotherapy responses. Metabonomic signatures revealed that bile acid metabolism alteration, especially elevated secondary bile acids, was a determinant of immunotherapy responses. Especially, the remission mice significantly enriched the proportion of the beneficial Lactobacillus and Clostridium genera, which were correlated with increased gastrointestinal levels of BAs involving lithocholic acid and deoxycholic acid. Moreover, most of the omics features observed in colitis mice were replicated in clinical cases. Notably, anti-α4ß7 integrin provided sustained therapeutic benefits in clinical remitters during follow-up, and long-lasting remission was linked to persistent changes in the microbial-related bile acids. In conclusion, gut microbiota-mediated bile acid metabolism alteration could play a crucial role in regulating immunotherapy responses to anti-α4ß7-integrin in Crohn's disease. Therefore, the identification of prognostic microbial signals facilitates the advancement of targeted probiotics that activate anti-inflammatory bile acid metabolic pathways, thereby improving immunotherapy responses. The integrated multi-omics established in our research provide valuable insights into potential mechanisms that impact treatment responses in complex diseases.


Assuntos
Colite , Doença de Crohn , Microbioma Gastrointestinal , Animais , Camundongos , Doença de Crohn/tratamento farmacológico , Multiômica , Integrinas/genética , Integrinas/uso terapêutico , Colite/induzido quimicamente , Colite/terapia , Ácidos e Sais Biliares/uso terapêutico , Imunoterapia
5.
Cells Dev ; 177: 203900, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218338

RESUMO

Within the developing embryo, cells assemble and remodel their surrounding extracellular matrix during morphogenesis. Fibronectin is an extracellular matrix glycoprotein and is a ligand for several members of the Integrin adhesion receptor family. Here, we compare the expression pattern and loss of function phenotypes of the two zebrafish fibronectin paralogs fn1a and fn1b. We engineered two fluorescently tagged knock-in alleles to facilitate live in vivo imaging of the Fibronectin matrix. Genetic complementation experiments indicate that the knock-in alleles are fully functional. Fn1a-mNeonGreen and Fn1b-mCherry are co-localized in ECM fibers on the surface of the paraxial mesoderm and myotendinous junction. In 5-days old zebrafish larvae, Fn1a-mNeonGreen predominantly localizes to the branchial arches, heart ventricle, olfactory placode and within the otic capsule while Fn1b-mCherry is deposited at the pericardium, proximal convoluted tubule, posterior hindgut and at the ventral mesoderm/cardinal vein. We examined Fn1a-mNeonGreen and Fn1b-mCherry in maternal zygotic integrin α5 mutants and integrin ß1a; ß1b double mutants and find distinct requirements for these Integrins in assembling the two Fibronectins into ECM fibers in different tissues. Rescue experiments via mRNA injection indicate that the two fibronectins are not fully inter-changeable. Lastly, we examined cross-regulation between the two Fibronectins and find fn1a is necessary for normal Fn1b fibrillogenesis in the presomitic mesoderm, but fn1b is dispensable for the normal pattern of Fn1a deposition.


Assuntos
Estruturas Embrionárias , Fibronectinas , Sistema Porta/embriologia , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Alelos , Integrinas/genética
6.
Biomol Biomed ; 24(1): 89-100, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-37540585

RESUMO

Atopic dermatitis (AD) is a severe inflammatory skin disorder, characterized by elevated levels of proinflammatory cytokines that fuel a vicious cycle of inflammation. While inflammatory recombinant human epidermal (RHE) models relevant to AD have been established, comprehensive understanding remains limited. To illuminate changes and identify potential hub genes involved in AD-related inflammation, RHE models, stimulated by an inflammatory cocktail including polyinosinic-polycytidylic acid, tumor necrosis factor alpha (TNF-α), interleukin 4 (IL-4) and interleukin 13 (IL-13), were constructed and examined using tandem mass tags-proteomic coupled with RNA-seq transcriptomic analyses. Principal component analysis (PCA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment were employed for the analysis of related genes and proteins. Protein-protein interaction networks helped identify hub genes, which were further confirmed by qPCR and western blot. We observed high expression of thymic stromal lymphopoietin in the inflammatory RHE. Our study identified 2369 differentially expressed genes and 880 differentially expressed proteins in the cocktail-induced group versus the normal control group. A total of 248 overlapping symbols were enriched in various biological processes and signaling pathways, including cornification envelope, cell-cell junction, calcium ion binding, extracellular matrix receptor, terpenoid backbone biosynthesis, and peroxisome proliferator-activated receptors signaling pathway, among others. Among the 248 overlapping symbols, CytoHubba identified 10 hub molecules, namely signal transducer and activator of transcription 3 (STAT3), integrin subunit beta 1 (ITGB1), filaggrin (FLG), involucrin (IVL), DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58), small proline rich protein 1B (SPRR1B), interferon induced with helicase C domain 1 (IFIH1), desmoglein 1 (DSG1), collagen type XVII alpha 1 chain (COL17A1), and integrin subunit alpha 6 (ITGA6), based on the degree. These integrated results offer valuable insights into the molecular mechanisms of AD and present potential tools for screening cosmetic formulations intended for the treatment of AD.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Proteômica , Citocinas/genética , Interleucina-13/genética , Perfilação da Expressão Gênica , Inflamação , Integrinas/genética
7.
Genomics ; 116(1): 110758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065236

RESUMO

Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.


Assuntos
MicroRNAs , RNA Longo não Codificante , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Testículo/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Integrinas/genética , Redes Reguladoras de Genes
8.
Environ Toxicol ; 39(4): 2077-2085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100242

RESUMO

Colorectal cancer (CRC) exhibits highly metastatic potential even in the early stages of tumor progression. Gallic acid (GA), a common phenolic compound in plants, is known to possess potent antioxidant and anticancer activities, thereby inducing cell death or cell cycle arrest. However, whether GA reduces the invasiveness of CRC cells without inducing cell death remains unclear. Herein, we aimed to investigate the antimetastatic activity of low-dose GA on CRC cells and determine its underlying mechanism. Cell viability and tumorigenicity were analyzed by MTS, cell adhesion, and colony formation assay. Invasiveness was demonstrated using migration and invasion assays. Changes in protein phosphorylation and expression were assessed by Western blot. The involvement of microRNAs was validated by microarray analysis and anti-miR antagonist. Our findings showed that lower dose of GA (≤100 µM) did not affect cell viability but reduced the capabilities of colony formation, cell adhesion, and invasiveness in CRC cells. Cellularly, GA downregulated the cellular level of integrin αV/ß3, talin-1, and tensin and diminished the phosphorylated FAK, paxillin, Src, and AKT in DLD-1 cells. Microarray results revealed that GA increased miR-1247-3p expression, and pretreatment of anti-miR antagonist against miR-1247-3p restored the GA-reduced integrin αV/ß3 and the GA-inhibited paxillin activation in DLD-1 cells. Consistently, the in vivo xenograft model showed that GA administration inhibited tumor growth and liver metastasis derived from DLD-1 cells. Collectively, our findings indicated that GA inhibited the metastatic capabilities of CRC cells, which may result from the suppression of integrin/FAK axis mediated by miR1247-3p.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Paxilina/genética , Paxilina/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ácido Gálico/farmacologia , Antagomirs , Integrina alfaV/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica
9.
Medicine (Baltimore) ; 102(50): e36412, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115319

RESUMO

Advanced and metastatic THCA patients usually have a poor prognosis. Thus, this study aimed to establish a risk model to discriminate the high risk population. The expression and clinical data were obtained from TCGA database. The cluster analysis, lasso, univariate and multivariate cox analyses were used to construct risk model. K-M, ROC and DCA were applied to validate the efficiency and stability of the model. GO, KEGG, and ssGSEA analysis were performed to identify the potential mechanism of signatures. The 7-gene prognosis model was constructed, including FAM27E3, FIGN, GSTM4, BEX5, RBPMS2, PHF13, and DCSTAMP. ROC and DCA results showed our model had a better prognosis prediction performance than other risk models. The high risk score was associated with the poor prognosis of THCA patients with different clinical characteristics. The risk score was closely related to cell cycle. Further, we found that the expressions of signatures were significantly dysregulated in THCA and associated with prognosis. These gene expressions were affected by some clinical characteristics, methylation and CNV. Some signatures played a role in drug sensitivity and pathway activation. We constructed a 7-gene signature model based on the integrin-related genes, which showed a great prognostic value in THCA.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Ciclo Celular , Análise por Conglomerados , Bases de Dados Factuais , Integrinas/genética , Prognóstico , Proteínas de Ligação a DNA , Fatores de Transcrição
10.
Sci Signal ; 16(809): eadf8299, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906629

RESUMO

Mechanical cues sensed by integrins induce cells to produce proteases to remodel the extracellular matrix. Excessive protease production occurs in many degenerative diseases, including osteoarthritis, in which articular cartilage degradation is associated with the genesis of matrix protein fragments that can activate integrins. We investigated the mechanisms by which integrin signals may promote protease production in response to matrix changes in osteoarthritis. Using a fragment of the matrix protein fibronectin (FN) to activate the α5ß1 integrin in primary human chondrocytes, we found that endocytosis of the integrin and FN fragment complex drove the production of the matrix metalloproteinase MMP-13. Activation of α5ß1 by the FN fragment, but not by intact FN, was accompanied by reactive oxygen species (ROS) production initially at the cell surface, then in early endosomes. These ROS-producing endosomes (called redoxosomes) contained the integrin-FN fragment complex, the ROS-producing enzyme NADPH oxidase 2 (NOX2), and SRC, a redox-regulated kinase that promotes MMP-13 production. In contrast, intact FN was endocytosed and trafficked to recycling endosomes without inducing ROS production. Articular cartilage from patients with osteoarthritis showed increased amounts of SRC and the NOX2 complex component p67phox. Furthermore, we observed enhanced localization of SRC and p67phox at early endosomes, suggesting that redoxosomes could transmit and sustain integrin signaling in response to matrix damage. This signaling mechanism not only amplifies the production of matrix-degrading proteases but also establishes a self-perpetuating cycle that contributes to the ongoing degradation of cartilage matrix in osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrinas/genética , Integrinas/metabolismo , Cartilagem Articular/metabolismo , Oxirredução , Endossomos/metabolismo
11.
Free Radic Biol Med ; 209(Pt 1): 152-164, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37852546

RESUMO

TNFα activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs). The extracellular superoxide anion (O2•-) produced is essential for the pro-inflammatory effects of the cytokine but the specific contributions of O2•- to signal transduction remain obscure. Extracellular superoxide dismutase (ecSOD, SOD3 gene) is a secreted protein that binds to cell surface heparin sulfate proteoglycans or to Fibulin-5 (Fib-5, FBLN5 gene), an extracellular matrix protein that also associates with elastin and integrins. ecSOD converts O2•- to hydrogen peroxide (H2O2) which prevents NO• inactivation, limits generation of hydroxyl radical (OH•), and creates high local concentrations of H2O2. We hypothesized that ecSOD modifies TNFα signaling in VSMCs. Knockdown of ecSOD (siSOD3) suppressed downstream TNFα signals including MAPK (JNK and ERK phosphorylation) and NF-κB activation (luciferase reporter and IκB phosphorylation), interleukin-6 (IL-6) secretion, iNOS and VCAM expression, and proliferation (Sulforhodamine B assay, PCNA western blot). These effects were associated with significant reductions in the expression of both Type1 and 2 TNFα receptors. Reduced Fib-5 expression (siFBLN5) similarly impaired NF-κB activation by TNFα, but potentiated FAK phosphorylation at Y925. siSOD3 also increased both resting and TNFα-induced phosphorylation of FAK and of glycogen synthase kinase-3ß (GSK3ß), a downstream target of integrin linked kinase (ILK). These effects were dependent upon α5ß1 integrins and siSOD3 increased resting sulfenylation (oxidation) of both integrin subunits, while preventing TNFα-induced increases in sulfenylation. To determine how ecSOD modified TNFα-induced inflammation in intact blood vessels, mesenteric arteries from VSMC-specific ecSOD knockout (KO) mice were exposed to TNFα (10 ng/ml) in culture for 48 h. Relaxation to acetylcholine and sodium nitroprusside was impaired in WT but not ecSOD KO vessels. Thus, ecSOD association with Fib-5 supports pro-inflammatory TNFα signaling while tonically inhibiting α5ß1 integrin activation.


Assuntos
Músculo Liso Vascular , Fator de Necrose Tumoral alfa , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Fator de Necrose Tumoral alfa/genética , Superóxido Dismutase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Peróxido de Hidrogênio/metabolismo , Ativação Transcricional , Transdução de Sinais , Integrinas/genética , Integrinas/metabolismo
12.
Nat Cell Biol ; 25(10): 1453-1464, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770566

RESUMO

Integrin-mediated focal adhesions are the primary architectures that transmit forces between the extracellular matrix (ECM) and the actin cytoskeleton. Although focal adhesions are abundant on rigid and flat substrates that support high mechanical tensions, they are sparse in soft three-dimensional (3D) environments. Here we report curvature-dependent integrin-mediated adhesions called curved adhesions. Their formation is regulated by the membrane curvatures imposed by the topography of ECM protein fibres. Curved adhesions are mediated by integrin ɑvß5 and are molecularly distinct from focal adhesions and clathrin lattices. The molecular mechanism involves a previously unknown interaction between integrin ß5 and a curvature-sensing protein, FCHo2. We find that curved adhesions are prevalent in physiological conditions, and disruption of curved adhesions inhibits the migration of some cancer cell lines in 3D fibre matrices. These findings provide a mechanism for cell anchorage to natural protein fibres and suggest that curved adhesions may serve as a potential therapeutic target.


Assuntos
Junções Célula-Matriz , Adesões Focais , Adesão Celular/fisiologia , Junções Célula-Matriz/metabolismo , Adesões Focais/metabolismo , Integrinas/genética , Integrinas/metabolismo , Matriz Extracelular/metabolismo
14.
Genes (Basel) ; 14(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37510356

RESUMO

Integrin members are cell adhesion receptors that bind to extracellular matrix (ECM) proteins to regulate cell-cell adhesion and cell-ECM adhesion. This process is essential for tissue development and organogenesis. The fusion of two testes is a physiological phenomenon that is required for sperm production and effective reproduction in many Lepidoptera. However, the molecular mechanism of testicular fusion is unclear. In Spodoptera litura, two separated testes fuse into a single testis during the larva-to-pupa transformation. We identified five α and five ß integrin subunits that were closely associated with testicular fusion. Integrin α1 and α2 belong to the position-specific 1 (PS1) and PS2 groups, respectively. Integrin α3, αPS1/αPS2, and αPS3 were clustered into the PS3 group. Integrin ß1 belonged to the insect ß group, and ß2, ß3, and ß5 were clustered in the ßν group. Among these integrins, α1, α2, α3, αPS1/PS2, αPS3, ß1, and ß4 subunits were highly expressed when the testes fused. However, their expression levels were much lower before and after the fusion of the testis. The qRT-PCR and immunohistochemistry analyses indicated that integrin ß1 mRNA and the protein were highly expressed in the peritoneal sheath of the testis, particularly when the testes fused. These results indicate that integrins might participate in S. litura testicular fusion.


Assuntos
Integrina beta1 , Integrinas , Animais , Masculino , Integrinas/genética , Integrinas/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Testículo/metabolismo , Sêmen/metabolismo , Proteínas da Matriz Extracelular/metabolismo
15.
Exp Cell Res ; 430(2): 113723, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499931

RESUMO

Intestinal epithelial cell differentiation is a highly controlled and orderly process occurring in the crypt so that cells migrating out to cover the villi are already fully functional. Absorptive cell precursors, which originate from the stem cell population located in the lower third of the crypt, are subject to several cycles of amplification in the transit amplifying (TA) zone, before reaching the terminal differentiation compartment located in the upper third. There is a large body of evidence that absorptive cell differentiation is halted in the TA zone through various epigenetic, transcriptional and intracellular signalling events or mechanisms allowing the transient expansion of this cell population but how these mechanisms are themself regulated remains obscure. One clue can be found in the epithelial cell-matrix microenvironment located all along the crypt-villus axis. Indeed, a previous study from our group revealed that α5-subunit containing laminins such as lamimin-511 and 512 inhibit early stages of differentiation in Caco-2/15 cells. Among potential receptors for laminin 511/512 is the integrin α7ß1, which has previously been reported to be expressed in the human intestinal crypts and in early stages of Caco-2/15 cell differentiation. In this study, the effects of knocking down ITGA7 in Caco-2/15 cells were studied using shRNA and CRISPR/Cas9 strategies. Abolition of the α7 integrin subunit resulted in a significant increase in the level of differentiation and polarization markers as well as the morphological features of intestinal cells. Activities of focal adhesion kinase and Src kinase were both reduced in α7-knockdown cells while the three major intestinal pro-differentiation factors CDX2, HNFα1 and HNF4α were overexpressed. Two epigenetic events associated with intestinal differentiation, the reduction of tri-methylated lysine 27 on histone H3 and the increase of acetylation of histone H4 were also observed in α7-knockdown cells. On the other hand, the ablation of α7 had no effect on cell proliferation. In conclusion, these data indicate that integrin α7ß1 acts as a major repressor of absorptive cell terminal differentiation in the Caco-2/15 cell model and suggest that the laminin-α7ß1 integrin interaction occurring in the transit amplifying zone of the adult intestine is involved in the transient halting of absorptive cell terminal differentiation.


Assuntos
Integrinas , Intestinos , Humanos , Células CACO-2 , Integrinas/genética , Integrinas/metabolismo , Diferenciação Celular/fisiologia , Histonas/metabolismo
16.
Cancer Commun (Lond) ; 43(7): 765-787, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386737

RESUMO

BACKGROUND: Programmed death ligand 1 (PD-L1) has been demonstrated to facilitate tumor progression and therapeutic resistance in an immune-independent manner. Nevertheless, the function and underlying signaling network(s) of cancer cell-intrinsic PD-L1 action remain largely unknown. Herein, we sought to better understand how ubiquitin-specific peptidase 51 (USP51)/PD-L1/integrin beta-1 (ITGB1) signaling performs a cell-intrinsic role in mediating chemotherapeutic resistance in non-small cell lung cancer (NSCLC). METHODS: Western blotting and flow cytometry were employed for PD-L1 detection in NSCLC cell lines. Coimmunoprecipitation and pulldown analyses, protein deubiquitination assay, tissue microarray, bioinformatic analysis and molecular biology methods were then used to determine the significance of PD-L1 in NSCLC chemoresistance and associated signaling pathways in several different cell lines, mouse models and patient tissue samples. Ubiquitin-7-amido-4-methylcoumarin (Ub-AMC)-based deubiquitinase activity, cellular thermal shift and surface plasmon resonance (SPR) analyses were performed to investigate the activity of USP51 inhibitors. RESULTS: We provided evidence that cancer cell-intrinsic PD-L1 conferred the development of chemoresistance by directly binding to its membrane-bound receptor ITGB1 in NSCLC. At the molecular level, PD-L1/ITGB1 interaction subsequently activated the nuclear factor-kappa B (NF-κB) axis to elicit poor response to chemotherapy. We further determined USP51 as a bona fide deubiquitinase that targeted the deubiquitination and stabilization of the PD-L1 protein in chemoresistant NSCLC cells. Clinically, we found a significant direct relationship between the USP51, PD-L1 and ITGB1 contents in NSCLC patients with chemoresistant potency. The elevated USP51, PD-L1 and ITGB1 levels were strongly associated with worse patient prognosis. Of note, we identified that a flavonoid compound dihydromyricetin (DHM) acted as a potential USP51 inhibitor and rendered NSCLC cells more sensitive to chemotherapy by targeting USP51-dependent PD-L1 ubiquitination and degradation in vitro and in vivo. CONCLUSIONS: Together, our results demonstrated that the USP51/PD-L1/ITGB1 network potentially contributes to the malignant progression and therapeutic resistance in NSCLC. This knowledge is beneficial to the future design of advanced cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno B7-H1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Integrinas/genética , Integrinas/uso terapêutico , Fenótipo , Enzimas Desubiquitinantes/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-37327728

RESUMO

Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGß subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGß subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGß1, ITGß2, ITGß3, and ITGß8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.


Assuntos
Linguados , Linguado , Vibrioses , Animais , Filogenia , Integrinas/genética , Integrinas/metabolismo , Perfilação da Expressão Gênica , Linguados/genética , Linguados/metabolismo , Vibrioses/genética , Vibrioses/veterinária , Linguado/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
18.
Signal Transduct Target Ther ; 8(1): 247, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37369642

RESUMO

The extracellular matrix (ECM) serves as signals that regulate specific cell states in tumor tissues. Increasing evidence suggests that extracellular biomechanical force signals are critical in tumor progression. In this study, we aimed to explore the influence of ECM-derived biomechanical force on breast cancer cell status. Experiments were conducted using 3D collagen, fibrinogen, and Matrigel matrices to investigate the role of mechanical force in tumor development. Integrin-cytoskeleton-AIRE and DDR-STAT signals were examined using RNA sequencing and western blotting. Data from 1358 patients and 86 clinical specimens were used for ECM signature-prognosis analysis. Our findings revealed that ECM-derived mechanical force regulated tumor stemness and cell quiescence in breast cancer cells. A mechanical force of ~45 Pa derived from the extracellular substrate activated integrin ß1/3 receptors, stimulating stem cell signaling pathways through the cytoskeleton/AIRE axis and promoting tumorigenic potential and stem-like phenotypes. However, excessive mechanical force (450 Pa) could drive stem-like cancer cells into a quiescent state, with the removal of mechanical forces leading to vigorous proliferation in quiescent cancer stem cells. Mechanical force facilitated cell cycle arrest to induce quiescence, dependent on DDR2/STAT1/P27 signaling. Therefore, ECM-derived mechanical force governs breast cancer cell status and proliferative characteristics through stiffness alterations. We further established an ECM signature based on the fibrinogen/fibronectin/vitronectin/elastin axis, which efficiently predicts patient prognosis in breast cancer. Our findings highlight the vital role of ECM-derived mechanical force in governing breast cancer cell stemness/quiescence transition and suggest the novel use of ECM signature in predicting the clinical prognosis of breast cancer.


Assuntos
Integrinas , Neoplasias , Integrinas/genética , Linhagem Celular Tumoral , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Transdução de Sinais/genética , Fibrinogênio/genética , Fibrinogênio/metabolismo , Neoplasias/metabolismo
19.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298565

RESUMO

Thoracic aortic aneurysm is found in patients with ACTA2 pathogenic variants. ACTA2 missense variants are associated with impaired aortic smooth muscle cell (SMC) contraction. This study tested the hypothesis that the Acta2R149C/+ variant alters actin isoform expression and decreases integrin recruitment, thus, reducing aortic contractility. Stress relaxation measurements in thoracic aortic rings showed two functional regimes with a reduction of stress relaxation in the aorta from Acta2R149C/+ mice at low tension, but not at high tension values. Contractile responses to phenylephrine and potassium chloride were 50% lower in Acta2R149C/+ mice than in wild-type (WT) mice. Additionally, SMC were immunofluorescently labeled for specific proteins and imaged by confocal or total internal reflection fluorescence microscopy. The quantification of protein fluorescence of Acta2R149C/+ SMC showed a downregulation in smooth muscle α-actin (SMα-actin) and a compensatory upregulation of smooth muscle γ-actin (SMγ-actin) compared to WT cells. These results suggest that downregulation of SMα-actin leads to reduced SMC contractility, while upregulation of SMγ-actin may lead to increased SMC stiffness. Decreased α5ß1 and α2ß1 integrin recruitment at cell-matrix adhesions further reduce the ability of mutant cells to participate in cell-matrix crosstalk. Collectively, the results suggest that mutant Acta2R149C/+ aortic SMC have reduced contractility and interaction with the matrix, which are potential long-term contributing factors to thoracic aortic aneurysms.


Assuntos
Actinas , Aneurisma da Aorta Torácica , Camundongos , Animais , Actinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Miócitos de Músculo Liso/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Junções Célula-Matriz/metabolismo , Músculo Liso/metabolismo
20.
J Plant Res ; 136(4): 563-576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133572

RESUMO

Using effective genes to improve crop stress tolerance through genetic engineering is an important way to stabilize crop yield and quality across complex climatic environments. Integrin-like AT14A, as a continuum of the cell wall-plasma membrane-cytoskeleton, functions in the regulation of cell wall synthesis, signal transduction, and the response to stress. In this study, AT14A was overexpressed in Solanum lycopersicum L. In transgenic plants, both chlorophyll content and net photosynthetic rate increased. Physiological experiments suggested that the proline content and antioxidant enzyme (superoxide dismutase, catalase, peroxidase) activities of the transgenic line were significantly higher than those of wild-type plants under stress, which contributed to the enhanced water retention capacity and free radical scavenging ability of the transgenic line. Transcriptome analysis revealed that AT14A enhanced drought tolerance by regulating waxy cuticle synthesis genes, such as 3-ketoacyl-CoA synthase 20 (KCS20), non-specific lipid-transfer protein 2 (LTP2), antioxidant enzyme system genes peroxidase 42-like (PER42), and dehydroascorbate reductase (DHAR2). AT14A regulates expression of Protein phosphatase 2 C 51 (PP2C 51) and ABSCISIC ACID-INSENSITIVE 5 (ABI5) to participate in ABA pathways to enhance drought tolerance. In conclusion, AT14A effectively improved photosynthesis and enhanced drought tolerance in S. lycopersicum.


Assuntos
Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Solanum lycopersicum/genética , Resistência à Seca , Integrinas/genética , Integrinas/metabolismo , Antioxidantes/metabolismo , Secas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...